Clinical effectiveness of Invisalign® orthodontic treatment: a systematic review

Aim was to systematically search the literature and assess the available evidence regarding the clinical effectiveness of the Invisalign® system.

Methods

Electronic database searches of published and unpublished literature were performed. The reference lists of all eligible articles were examined for additional studies. Reporting of this review was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

Results

Three RCTs, 8 prospective, and 11 retrospective studies were included. In general, the level of evidence was moderate and the risk of bias ranged from low to high, given the low risk of bias in included RCTs and the moderate (n = 13) or high (n = 6) risk of the other studies. The lack of standardized protocols and the high amount of clinical and methodological heterogeneity across the studies precluded a valid interpretation of the actual results through pooled estimates. However, there was substantial consistency among studies that the Invisalign® system is a viable alternative to conventional orthodontic therapy in the correction of mild to moderate malocclusions in non-growing patients that do not require extraction. Moreover, Invisalign® aligners can predictably level, tip, and derotate teeth (except for cuspids and premolars). On the other hand, limited efficacy was identified in arch expansion through bodily tooth movement, extraction space closure, corrections of occlusal contacts, and larger antero-posterior and vertical discrepancies.

Conclusions

Although this review included a considerable number of studies, no clear clinical recommendations can be made, based on solid scientific evidence, apart from non-extraction treatment of mild to moderate malocclusions in non-growing patients. Results should be interpreted with caution due to the high heterogeneity.

Background

Orthodontic developments, especially during the last years, have been accompanied by a significant increase in the esthetic demands of the patients. Patients often express the need to influence, or even determine, treatment aspects or objectives, along with the orthodontist, driven by the effects that orthodontic appliances have in their appearance. Conventional orthodontic methods have been associated with a general compromise in facial appearance [1] raising a major concern among patients seeking orthodontic treatment [2]. Thus, esthetic materials and techniques have been introduced in clinical practice aiming to overcome these limitations [3].

Since its development in 1997, Invisalign® technology has been established worldwide as an esthetic alternative to labial fixed appliances [4,5,6,7]. CAD/CAM stereolithographic technology has been used to forecast treatment outcomes and fabricate a series of custom-made aligners using a single silicone or digital impression [6]. After its introduction, the system has been drastically developed and continually improved in many aspects; different attachment designs, new materials, and new auxiliaries, such as “Precision Cuts” and “Power Ridges” were designed to enable additional treatment biomechanics. According to the manufacturer, Invisalign® can effectively perform major tooth movements, such as bicuspid derotation up to 50° and root movements of upper central incisors up to 4 mm [8]. Despite the advocated efficiency of the treatment, its clinical potency still remains controversial among professionals, with advocates being convinced by the successfully demonstrated treated cases, as indicated by clinical evidence, in contrast to opponents who argue about significant limitations, especially in the treatment of complex malocclusions [5, 9,10,11].

Despite the available body of literature pertaining to Invisalign® technology, its clinical performance has been analyzed less thoroughly and a synthesis of the results still remains vague. Four systematic reviews about clear aligners exist in the literature: the first one was published back in 2005 and assessed the treatment effects of Invisalign; it included, nevertheless, only two studies [12]. More recently, another three reviews have been published. The first one was last updated in June 2014; it included 11 studies and evaluated the control of the clear aligners on orthodontic tooth movement [13]. The second one evaluated the periodontal health during clear aligner therapy and was published in the same year [14], and the most recent one was undertaken in October 2014 and included four studies, since it focused on the comparison between clear aligners and conventional braces [15].

Therefore, the purpose of the present review was to systematically search the literature and summarize the current available scientific evidence regarding the clinical effectiveness of the Invisalign® system as principal orthodontic therapy to orthodontic patients of any age treated with this method comparing either among them or those with conventional braces and evaluating the level of efficacy in various malocclusions.

Materials and methods

Types of studies

Randomized clinical trials (RCTs), controlled clinical trials (CCTs), and prospective and retrospective studies were considered eligible for inclusion in this review. These studies concerned to the clinical part of treatment with Invisalign, with no restrictions in language, age, status of publication, and cases with teeth extractions.

Types of participants

Orthodontic patients of any age who were treated with Invisalign® either as the intervention or as the control group.

Types of interventions

Invisalign® therapy. All other aligner systems have been excluded.

Outcome

Any effect on clinical efficiency, effectiveness, treatment outcomes, movement accuracy, or predicted tooth movement in ClinCheck® of Invisalign® treatment, including changes in alignment or occlusion, treatment duration, and completion rate, as primary outcomes. Adverse events/unwanted effects have also been recorded.

Search methods for identification of studies

Detailed search strategies were developed and appropriately revised for each database, considering the differences in controlled vocabulary and syntax rules. The following electronic databases were searched: MEDLINE (via Ovid and PubMed, Appendix, from 1946 to August 28, 2017), Embase (via Ovid), the Cochrane Oral Health Group’s Trials Register, and CENTRAL.

Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, and Pro-Quest Dissertation Abstracts and Thesis database.

The search attempted to identify all relevant studies irrespective of language. The reference lists of all eligible studies were examined for additional studies.

Selection of studies

Study selection was performed independently and in duplicate by the first two authors of the review, who were not blinded to the identity of the authors of the studies, their institutions, or the results of their research. Study selection procedure was comprised of title-reading, abstract-reading, and full-text-reading stages. After exclusion of not eligible studies, the full report of publications considered eligible for inclusion by either author was obtained and assessed independently. Disagreements were resolved by discussion and consultation with the third and the last author. A record of all decisions on study identification was kept.

Data extraction and management

The first two authors performed data extraction independently and in duplicate. Disagreements were resolved by discussion or the involvement of two collaborators (third author and last author). Data collection forms were used to record the desired information. The following data were collected on a customized data collection form:

Measures of treatment effect

For continuous outcomes, descriptive measures, such as mean differences and standard deviations, were used to summarize the data from each study. For dichotomous data, number of participants with events and total number of participants in experimental and control groups were analyzed.

Unit of analysis issues

In all cases, the unit of analysis was the patient.

Dealing with missing data

We contacted study authors per e-mail to request missing data where necessary. In case of no response or no provision of the missing data, only the available reported data were analyzed.

Data synthesis

A meta-analysis was planned only if there were at least two studies of low or unclear risk of bias, reporting similar comparisons, and similar outcomes at similar time points. Otherwise, qualitative synthesis of the included studies would be performed.

Quality assessment of included studies

The risk of bias for RCT studies was assessed by two review authors, independently and in duplicate, using the Cochrane risk of bias tool [16].

Risk of bias was assessed and judged for seven separate domains.

  1. 1. Sequence generation: was the allocation sequence adequately generated?
  2. 2. Allocation concealment: was allocation adequately concealed?
  3. 3. Blinding of participants and investigators: was knowledge of the allocated intervention adequately prevented during the study?
  4. 4. Blinding of outcome assessors: was knowledge of the allocated intervention adequately prevented before assessing the outcome?
  5. 5. Incomplete outcome data: were incomplete outcome data adequately addressed?
  6. 6. Selective outcome reporting: were reports of the study free of suggestion of selective outcome reporting?
  7. 7. Other sources of bias: was the study apparently free of other problems that could put it at a high risk of bias?

Each study received a judgment of low risk, high risk, or unclear risk of bias (indicating either lack of sufficient information to make a judgment or uncertainty over the risk of bias) for each of the seven domains. Studies were finally grouped into the following categories:

Prospective and retrospective studies were graded as low, moderate, or high risk of bias according to the following criteria, adapted from the Bondemark scoring system [17]: